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On Issues of Precision for Hardware-based Volume Visualization

Eric LaMar

11th April 2003

Abstract

This paper discusses issues with the limited precision of
hardware-based volume visualization. We will describe
the compositing OVER operator and how fixed-point
arithmetic affects it. We propose two techniques to im-
prove the precision of fixed-point compositing and the
accuracy of hardware-based volume visualization. The
first technique is to perform dithering of color and alpha
values. The second technique we call exponent-factoring,
and captures significantly more numeric resolution than
dithering, but can only produce monochromatic images.

keywords: volume visualization, dithering, numerical
techniques, digital compositing

1 Introduction

Hardware

Software Dithering

Figure 1: A comparison software, hardware, and hard-
ware with dithering rendering techniques on the bonsai
dataset.

Graphics-hardware based volume visualization is capa-
ble of significantly faster visualization of a dataset than
software based techniques. However, graphics hardware
based techniques have a significant issues with image ac-
curacy because there is insufficient numeric precision to
properly implement the compositing math. While prior
works have noted that the limited depth of frame buffers
impacts image accuracy, there has no other discussion and
characterization of the limited precision and what can be
done to mediate it. Figure 1 compares our technique to
software and naive hardware solutions, and shows that
our technique is capable of capturing most of the impor-
tant image features.

Hardware-based volume visualization techniques, in-
cluding cell-projection, slicing, and textures all exhibit

the artifacts and issues discussed in this paper, so the 1

results of the paper are applicable to any rendering tech-
nique that uses limited-precision, fixed-point arithmetic
to implement the OVER operator.

The OVER operator came from computing overlay
matting for cartoon animation. While fine for that pur-
pose, the limitation of graphics hardware do not permit
scaling of the OVER operator.

We use per-unit-distance opacity because reproducing
the same image for datasets of different spatial resolutions
and extents is difficult using per-voxel opacity but trivial
using per-unit-distance opacity. We classify three forms
of error resulting from a fixed-point implementation of the
OVER operator: representation, pigeon-hole, and weight-
rounding.

We describe two techniques to reduce these errors. Qur
first technique is to dither the per-voxel color and opacity
values in the spatial domain. That is, for a series of voxels
whose per-voxel value cannot be accurately represented,
we periodically round the value up and down to ones
that can be represented. The aggregate effect of com-
positing those voxels is to approximate the original per-
voxel value. The second we call exponent-factoring, where
the exponent of the per-unit-distance to per-voxel opacity
transformation is incrementally applied. The data space
is decomposed hierarchically using an N-ary tree and per-
forming the compositing using local per-unit-distance and
per-voxel opacities. This technique captures significantly
more detail of a large volume.

2 Related Work

Hardware compositing started as a technique to automate
and accelerate the process of cartoon animation [Wal81,
PD84]. A “limited precision” OVER operator is fine for
cartoon animation because the number of layers tends to
be small (less than 10) and partial transparency is used to
represent sub-pixel occlusion and not “real” transparency.
There are few occasions that these partially transparent
regions are repeatedly composited on top of each other.

Cabral et.al. [CCF94] discuss how hardware-
accelerated texturing can perform volume rendering and
how this technique can also be used to reconstruct a vol-
ume from tomographic image set.

Kim et.al. [KWPO01] and Meisserner et.al. [MHBT00]
have compare the imagery and artifacts of different ren-
dering modalities and have noted the differences between



techniques, but did not investigate why limited precision,
fixed-point techniques degrade image quality. Witten-
bring et.al [WMG98| solve the problem of color bleed-
ing in volume visualization, but experienced poorer im-
age quality because the colors values became too small to
represent in 8 bit framebuffers.

Engel et.al. [EKEO1] introduce a hardware-based
volume rendering technique that deals with post-
classification sampling rates, but does not deal with the
numeric precision issues associated fixed-point quantities.

Prior research assumed that the mechanism to compos-
ite a small number of cartoon layers could be used to com-
posite large numbers of highly transparent layers. Also,
many works use a bimodal transfer-function (i.e., data
values become either totally opaque or totally transpar-
ent) or use volumes that are small enough to masking the
artifacts of large, semi-transparent volumes. Our work
explores the detailed processes the OVER operator and
what can be done to improve the quality of limited pre-
cision, fixed-point based volume visualization.

3 Per-Unit Opacity vs Per-Voxel
Opacity

We first discuss the relationship of per-unit-distance and
per-voxel opacity in volume visualization. While others
have developed formula similar to this, we feel that our
approach to calculating per-voxel opacity is clearer and
aids in simplifying the discussion of the genesis of image
errors. It is useful to discuss transfer functions in terms
of unit values, rather than voxels, so one can apply a
transfer function to different datasets that contain sim-
ilar data, but have different spatial size and resolution.
For example, if one models a material that has an optical
absorption of 50% over one inch, a user shouldn’t have
to calculate the per-voxel opacity if that volume is repre-
sented at a regular grid of, say 128° or 5122 voxels, or, in
the case of multiresolution volume visualization, a series
of volume from 643 up to 20483.

From the OVER operator definition [PD84], the final
color (), and opacity I', of a volume are computed, the
iterative form is:

Cn =50y (i (s (- a)) 4G n

n
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Where ¢; and «; are the per voxel color and alpha val-
ues at sample ¢, and Cy is the background color, Iy is
the background opacity, C,, is the final color C,,, and T,
is the final opacity. If we ignore the color and opacity
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contributions of the volume (foreground), we obtain the
extinction weighted background color and the extinction
value of the whole volume:
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From this one can see that C,, is actually the weighted
color value, C,, = Cla', weighted by the overall opac-
ity of the volume, which we will call /. We note
that is this representation of C, that is difficult: it is
weighted by opacity, which is often very small, so C,, is
very small and prone to the representation problems. If
we rewrite the equations and factor out CJ,, we obtain:
1-do' = H?Zl (1 — o). If we assume that the material is
homogeneous, 1 — o/ = (1 — a)”. Finally, solving for the
per-voxel component:

a=1-(1-a')" )

If one solves for the voxel opacities for two differing sam-
ple depths, say a and b, one obtains: a, =1— (1 — aa)%

Most generally, given a per unit distance opacity, o', and
some fractional distance, d, the opacity over that distance

is
(2)
We define our tests over an idealized unit volume, which
is sampled and projected to a screen of some arbitrary
resolution, where the horizontal component is X and ver-
tical is Y. The “sample depth” corresponds to the Z com-
ponent, and is the number of samples composited in the
Z direction. Hence the X & Y resolutions do not affect
per-voxel opacity, but the Z resolution, or sample depth,
does. Sample depth, for volume visualization applica-

tions, is the number of sample points or slicing planes
through a volume.

ag=1-(1-a)"

4 Problem Characterization

There are three basic issues with the lack of precision
1n application of the OVER operator, which we describe

the next three subsections. We use variations of a
synthetic “ramp” dataset for these discussions. This is a
2§6 x 1 dataset where the voxel values vary linearly from

=>r, <Oéi (H?:i+1 (1- Oéj))) +T H (1 — ;0 jpo 255 with the X axis (the Y axis size is arbitrary).

The dataset has a depth of one unit, so to test different
physical depths, we compute the per-voxel opacity based
on the sample depth S. In the following tests, the transfer
function is constructed to set the voxel color to white and
the desired per-unit opacity varies linearly from 0.0 on the
left to 1.0 on the right; the desired opacity for pixel (x,y)

z 1/8

is 5g=, thus the per-voxel opacity is 1 — (1 — x/255)



This dataset was constructed to test a “worst-case” sce-
nario of volume rendering: compositing the same value
upon itself multiple times. All of the artifacts discussed
here can be difficult to see when using random or complex
data. This “worst-case” scenario can be constructed with
any dataset and a poorly constructed transfer function
- one that maps many different data values to the same
color or opacity - which then “flattens” a region and result
in this form of compositing problem.

4.1 Limited Precision

The frame buffer of graphics cards stores the accumu-
lated results over a series of compositing operations. Even
if the graphics card is capable of computing intermedi-
ate results with higher precision, only the portion that
fits into the frame buffer will be retained for the next
composite cycle. For most cards, there are 8 bits allo-
cated to each color channel, and cannot accurately repre-
sented the per-voxel opacity values. For example, if the
desired per-unit-opacity is 0.5, the per-voxel for a sam-
ple depth of 64 is (from equation 1): 1 — (1 — 0.5)61*4 =
0.01077198681¢ or in fixed-point (truncated to 32 bits):
.0000001011000001 11110011 111100115. However, with
only 8 bits available, only the upper 8 bits are used, which
is .000000102, or 0.007812501¢. If we composite the value
64 times (and not accounting for other errors covered in
this paper): 1— (1 — 0.00781250)%* = 0.3946591, which is

quite far from our desired opacity of 0.5.

a) Software b) Depth=16
c) Depth—=64 d) Depth=256

Figure 2: A comparison of actual vs. desired per-unit-
distance opacity using software (figure a) and hardware
(figures b, c, & d).

Our experiments illustrate this error and how it can
manifest itself in an image. Figure 2 shows the affects of
per-voxel opacities for sample depths of 16, 64, and 256,
and should form a linear ramp. Figure 2(a) show the
correct image generated in software and is the baseline
image. Figure 2(b) correspond to hardware compositing
with a sample depth of 16 (i.e., n = 16 in equation 1). No-
tice how the image and curve show regular small jumps,
and is fairly close to the baseline (software) image.

Figure 2(c) shows hardware compositing with a sam-
ple depth of 64. This is a fairly poor approximation of
a linear ramp. The “knees” actually separate plateau re-
gions where the fixed-point representation is not capable
of differentiating the per-voxel opacities. For example,
the first plateau corresponds to compositing a value of
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Table 1: A comparison of desired per-unit-distance opac-
ity (“PUDo0”, column a) vs. computed opacity (“Co”, col-
umn d) for a sample depth of 64. The per-voxel opacity
(“PVo”, columns b and c) is shown in base-10 and base-2.
Only the values in left side of column (c¢) can be repre-
sented in the framebuffer, so anything else is simply lost.
Column (d) shows the value (in decimal) in the buffer
after all compositing is completed. This table is shown
graphically in Figure 2(c).

“1” 64 times. That is, all of the per-unit-distance values
translate to a per-voxel value of 1 to just less than 2, but
are truncated to 1. Table 1 shows this affect for a series
of per-unit-distance values.

Figure 2(d) shows hardware compositing with a sample
depth of 256, and is an extremely poor approximation of
the desired linear ramp. As the sample depth increases,
the per-voxel opacities decrease, and become more diffi-
cult to differentiate using fixed-point values.

4.2 Pigeon-Hole rounding

The second error we call the pigeon-hole artifact. Mathe-
matically, the OVER operator, given two operands, pro-
duces a new value. However, then compositing a small
value onto a larger value (or large value on a small one),
small differences in the values will not result in different
outputs.

Table 2 shows this affect using 4-bit fixed point arith-
metic. Here we show all combination of composited pairs
of values and the result r = OVER(f,b): given a back-
ground value b (reading down the table) and a input frag-
ment f (reading across the table), the fixed-point result is
in cell [b, f]. Wide cells indicate that the same value ap-
pears in consecutive cells. The pigeon-hole artifact comes
from the observation that for many pairs of values, the
composited result doesn’t change, i.e., OVER(f,b) = f
or OVER(f,b) = b. More generally, for large volume
where all voxel values are small, there will be a point at
which new compositive values will not longer contribute
to the final output image. For example, starting with a
background value of zero and incoming fragment values
of 1, the values produced will be: 0, 1, 2, 3, 4, 5, 6, 7, &,
8, ... (repeating 8’s forever). Using table 2, we start with
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Table 2: Example of compositing of for 4-bit fixed point
values f and g. OVER(f,b) is found in the above matrix

at [b, f].

f=1and b =0, then we have [0,1] = 1. Repeating until
b =8, we find that [8,1] = §;
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image. Hence, starting at the front on the volume will
allow the details closest to the viewer to contribute while
details far away, which are likely to be occluded anyway,
contribute less.

4.3 Weight rounding

This last artifact is more subtle and harder to character-
ize. The basic issue is that the OVER operator computes
an affine combination of two fixed-point numbers, i.e.,
x = axt+bx(1—t). The relative opacities, t and (1 —t)
are affected very differently by rounding: the value ¢ is
typically very small, so the value (1 —t) is large. For
large datasets, the typical color values (a and b) are quite
a bit larger than the per voxel opacity values (t). If the
value t' is slightly larger than ¢, the total magnitude of
the term a x t' is very small and it changes very little
from a x t, so is likely to round to the same value as a X t,
i.e., la X t| = |a x t'|. However, the total magnitude of
bx (1—t') is very large, and is not as likely to round to the
same value as bx (1—t), i.e., [bx (1 —¢)] > [bx (1 =1t)].
Thus, in the case where a = b, a small increase in opacity
produces a value that is actually smaller than the opacity
for t, d.e, [axt+ax(1—1t)] > |laxt' +ax(1-1)].
This artifact does not happen for every composition of a
particular color and opacity value, but often enough to
introduce significant error.

Table 3: An example of repeated composition of selected
4-bit fixed point values. Repeated compositions of the
foreground values are show from left to right. Long cells
with #... show that repeated compositions no longer
change its value.

Table 3 show this affect of a selected set of 4-bit values.
Given a background value of 14, foreground values of 0 to
7 produce a value of 14, while foreground fragment val-
ues of 8 to 15 produce a value of 15; i.e., half the input
values will not change a value of 14 was stored in a 4-bit
fixed-point frame buffer.

It is “common knowledge” in the visualization commu-
nity that front-to-back compositing produces higher qual-
ity imagery than back-to-front. The pigeon-hole artifact
describes this phenomenon quite clearly. Given a volume
that, in aggregate, is fairly opaque, values at the end of
a compositing run will contribute less (or nothing) to an

128 ‘ &)ftWére r: J‘ﬂ‘“rm‘

- Sample Depth=16 ——— HL}LW
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desired per-unit-distance opacity * Intensity=0.5

Figure 3: Plots of the “Weight rounding” artifact for sam-
ple depths of 16, 64, and 256.

We can see this affect in figure 3, with color=0.5 and
per-unit-opacity varies linearly from 0.0 to 1.0, so the
curves should follow a linear ramp from 0.0 to 0.5. The
black line in figure 3 is software and linearly ramps from
0.0 to 0.5. As sample depth increases, the lines no longer
strictly increase, but also decrease. The periodic de-
creases in the curves for sample depth of 16, 64, and 256,
are those points at which the rounding down of b x (1 —t)
occurs frequently, but the rounding up of a x ¢t does not
occur as frequently.



5 Improved Approximation by

Dithering

Dithering is the process of producing a series of values
that, in aggregate, produce a value that none of the val-
ues can represent directly. Our use of the term dithering
is the same, except we only dither with respect to the
composited values, or depth (Z) - we do no dithering in
screen (X & Y) space.

If we wish to add a series of numbers that cannot be
represented in an integer, say 1.5, we can choose either 1
or 2 to approximate it. The problem is that if we choose
1 and add it 10 times, the result is 10, not 15. Same if
we use 2 - the result is 20. However, if we alternate by
adding 1, then 2, and repeating, we obtain a result of 15.
This is a simplistic example but illustrates the basic idea
of the technique.

Our code affects the alternating of values by repeating
a randomly permuted set values. For a dithering period
of X, and a value of Y (with f =Y — floor[Y], e.g., f is
the fractional part of V), then we use X — | X * f| terms
of |Y] and | X * f] terms of |Y | + 1. For example, with
a dithering of period 10, and a value of 1.4, on pattern
that could be produced is:

{1,2,1,2,1,2,1,1,2,1,...1,2,1,2,1,2,1,1,2,1, ...}

5.1 Implementation

Our experiments were conducted under OpenGL, and use
palleted textures extension to implement dithering; that
is, for a texture with an ordinal value of X which is meant
to represent 2.5, one palette would translate it to a value
of 2, while the other would translate it to a value of 3.

A two dimensional table is constructed at run time
where the height corresponds to the size of the trans-
fer function (256 entries, as we use just byte-sized scalar
data) and the width is the dithering period. For each
slice, we download the dither table corresponding to the
slice number modulus the dithering period (e.g., repeat-
ing the dithering pattern). This path is fully optimized in
hardware on our system. However, one could use depen-
dent texture lookups to implement this kind of dither-
ing. We have not yet examined the performance issues
of downloading a new palette each slice vs. the cost of
dependent texture lookups.

We use a dithering period of 11 for most of our ex-
periments, though we show in section 5.2 that using a
dithering period of 256 can be necessary. There is a rela-
tionship of the smallest per-voxel value and the smallest
value that a dithering pattern can capture that we have
not yet fully explored, but it is clear that the size of the
dithering period should be a function of the sample depth
(i.e., dataset depth).

5.2 Results

Our dithering technique can significantly improve image
quality. However, our “round-up-round-down” dithering
technique only really deals with the first artifact, rep-
resentation. Our rounding technique only works on the
pigeon-hole artifact if the foreground fragment value hap-
pens to be at the end of a run of similar values (i.e., at
the right end of a long cell in table 2). For example, if
OVER(z,y) =y and OVER(z + 1,y) = y, then dither-
ing x with {z,2 + 1} will accomplish nothing. To deal
with this, the dither increment must be larger than 1.
However, OpenGL has no way to modify a background
fragment by different amounts based on its value; nor is
it practical to try to estimate a voxel’s depth with re-
spect to the screen in a general projection on a pixel-by-
pixel basis (thereby estimating what the increment should
be). However, a dither mechanism where the increment
is something other that 1, based on the background frag-
ment value, could be accomplished in a pixel program.
Spatial dithering has a problem in that thin or highly-
transparent structures may be skipped entirely. For ex-
ample, a series of 9 voxels along a ray have a value of
0.1. If the dithering period is less than 9, then all of the
dithered values will be zero and no contribution is made.
If the dithering period is 10, such that one voxel will be
dithered to a value of 1, it is also possible for the voxels
not to contribute if the time at which the rounding up
occurs is just before or just after this set of 9 voxels. By
extension, the appearant position of a boundary of some
structures may move as a result of dithering. Given the
last example of 9 voxels and a dithering period of 10: the
position at which boundary appears will correspond to
the position of the single dithering up of the voxel value.

(a) Software (b) Hardware (c) Dithering
Figure 4: Comparison of software, hardware, and hard-

ware with dithering (sample depth = 64), with color=1.0.
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Figure 5: A comparison of software and hardware dither-
ing for color=0.5. The dip in the dithering curves are due
to the “weight-rounding” artifact.



The ramp dataset is shown in figure 4 shows that our
dithering technique is able to recover most of the charac-
ter of the software version (image 4(a)). Figure 5 shows
the profile plots for the ramp dataset for color=0.5, using
sampling depth of 16, 64, and 256. While the curve for
sample depth of 16 tracks the software slope fairly closely,
the curve for a sample depth of 64 has some noticeable
wiggles and considerable over estimates the slope for the
first half of the graph. The curve for a sampling depth
of 256 shows that dithering is simply not capable of re-
covering the ramp. Our dithering technique can improve
the image quality, but has trouble overcoming the “weight
rounding” artifact.

Our second dataset is a Richtmyer-Meshkov (RM)
turbulent-mixing simulation [MCC*99]. The dataset is
20482 x 1980 voxels by 237 timesteps, and we use the
center 1024° of timestep 175. Figure 6 shows a series of
renderings of the RM dataset: the images show a denser
liquid on the right, moving into less dense liquid on the
left. The color transfer function linearly maps density of
0.0 to green and 1.0 to red. The opacity transfer function
maps the density to proportional desired opacity. The
sampling depth is 1024 because we use 2D textures.

Red Green
DP||L.| L: Ly |[Loo| Li | Lo
1 (|195]-78.22|112.64|| 47 |-20.01|23.21
4 || 67 (-20.29| 35.45 || 47 |-20.01|23.21
16 || 68 |-17.76| 35.03 || 42 | 12.54 (22.33
64 || 68 |-16.31| 35.49 || 49 | 13.43 [22.80
256|| 68 |-16.00| 35.05 || 52 | 12.66 [18.90

Table 4: Hardware dithering on RM dataset, time-step
175. This table shows error values for the red and green
channels of the images in figure 6.

Figure 6 illustrates increasing the dithering period from
1 to 256 by powers of four. A dithering period one 1 is
actually not dithering; no image is generated as all of
the per-voxel values are too small to be represented and
are simply truncated. A dithering period of 4 shows the
essential outline of the high-density fluid in red on the
right side and the entry of thin plumes of high-density
fluid on the left. Orange appears in the right regions
with a dithering period of 16. Dithering period 64 do not
seem to add any important detail: there seems to be a lot
of noise in the images. This can be largely attributed to
the issue of dithering on thin, diaphanous structures: the
noise results from the dithering pattern apparently mov-
ing the location of boundaries of these thin structures.
At a dithering period of 256, we find the less dense liquid
on the left finally appearing. While extremely faint, the
value in the dithered image is the same as in the software
image, 4 (on a scale of 0 to 255). Table 4 shows the L,
Ly, and Ly errors for the red and green channels of the
images in figure 6.

Software Dither Period=16

Dither Period—=1 Dither Period—64

Dither Period=4 Dither Period=256

Figure 6: Comparing software vs hardware with dithering
on RM dataset.

6 Exponent-factoring compositing

Our ezponent-factoring technique comes from the obser-
vation that the opacity portion of the OVER operator
can be factored into a hierarchy of operations where the
exponent portion of the per-unit-to-per-voxel translation
equation can be incrementally applied. The significance
of this is that the intermediate per-voxel values can be
many orders larger that the final per-voxel opacity val-
ues, which lessens the impact of limited width, fixed-
point representations. For example, for a set of 32 slices,
earlier techniques would compute a per-voxel opacity as
a =1- (1 - a)"3, where alpha (a) is not likely to
representable in fixed-point. For example our technique
could factor a set of 32 slices into a compositing tree with
bifurcation factors associated with each level of the tree
of 4 x 2 x 4. The per-voxel opacity for the leaf level
of the tree is calculated with a sample depth of 4, or
ar—1 = 1 — (1 —a/)'/%. In the next level, the per-voxel
alpha would be computed from the prior level’s final al-
pha, or ar—s = 1 — (1 — az—1)"/?; and the last (root)
level would be @ = ap—3 = 1 — (1 — ap—2)'/%. If we so



expand this series, we find:

a=1-(1-(1-(1—-(1—(1—a/)/*) /2 = 1—(1-a/)/
(3)
©)
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Figure 7: Two routes to the same result. ’Z’ indicates
“per-unit-distance to per-voxel opacity transformation”
and ’C’ indicates compositing. Normal compositing fol-
lows path (1) - (2); our technique follows path (3) - (4).
A, is per-unit-distance opacity, a; is per voxel opacity, and
®,, is the final, computed opacity. ®4 is an intermediate
opacity value.

While this technique can capture significantly more de-
tail that dithering approaches, it cannot be used on the
color channels because this factoring approach does not
preserve the relative contribution of voxel colors. This
technique could be used in applications where there is a
strong need for visualizing large amount of highly trans-
parent media. For example, this could be used to calcu-
late highly accurate shadow volumes, occlusion, or light-
maps, or medical and industrial CT applications.

6.1 Proof

We wish to show that the alpha component of composit-
ing is insensitive to the location/application of the frac-
tional component of the unit-to-voxel-volume opacity re-
lationship. See figure 7 for a graphical sequences of oper-
ations. Normal compositing follows steps (1) and (2):
given per-unit-distance opacities A;, compute the per-
voxel a; opacities, then composite this values to the fi-
nal opacity ¢,. However, one can follow steps (3) and
(4) to produce the same result: composites the per-unit-
distance opacities A; and produce an intermediate opacity
of ¢ 4, then apply the per-unit-to-per-voxel opacity trans-
formation to produce ¢,. Our inputs are the number of
samples n and per-unit-distance opacity of sample i, A;.
The normal compositing computes the per-voxel opacity
(see equation 1) for sample 4 :

ai=1—(1—A)" (4)

Then composites these values to produce the final opac-
ity @q:

(5)

32

However, one can composite the per-unit-distance

opacities first:

n

dp=1-]]1-A4)

i=1

(6)

Then apply the the per-unit-distance to per-voxel opac-
ity calculation (exponent-swizzle, see equation 1):

Bo=1—(1— )" (7)

If we combine equations 4 and 5 (following path (1)-(2)
from figure 7), we obtain:

n

1- ] ={a:})

= 1-[I(-{r-a-4y7})

@,

=

_ 1—f[((1—A,-)%)
= 1_(ﬁ(1_Ai) '

If we combine equations 6 and 7 (following path (3)-(4)
from figure 7), we obtain:

1—(1—{®4})"

1_<1_{1_ﬁ<1_,4i)}>"
1_(" (1—141'));
i=1

For both, we arrive at the formula, ®, = 1 —

(I, - A,-))%, which shows that both paths are the
same. This means that when we compute the per-voxel
opacities from per-unit-distance opacities, we do not need
to apply the full exponent all at once. If we did, we would
get the situation shown in section 4.1 where the per-voxel
values were simply truncated to zero for a large number
of per-unit-distance values. As we showed in equation 3,
this technique can be used to factor the per-unit-distance-
to-per-voxel opacity transformation into a hierarchy of
transformations.

@,

Il

6.2 Implementation

The current approach uses palleted textures to apply the
initial transfer function and the PixelTransfer operations
to apply the exponent-swizzle operation. The use of these
features together can occasionally use non-optimized ren-
dering paths. Implementing the swizzle operation in a
dependant texture lookup should be considerably faster,



as these are highly optimized operations in new graphics
cards. We plan to implement this so in future. The code
routine is shown in figure Figure 8.

global Z: current slice in volume
begin display()
call HierachicalRendering( root node )
final image is in the frame buffer
end display
subroutine HierarchicalRendering( node )
clear frame buffer
if node is leaf
download swizzle values for leaf nodes
for each slice in leaf node
composite slice Z
increment Z
else
call HierarchicalRendering on all subnodes
draw image from subnode’s cache for all subnodes
if node not root
copy and swizzle image in buffer to node’s cache

end HierarchicalRendering

Figure 8: The pseudocode for exponent-factoring.

6.3 Results
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Figure 9: The results of exponent-factoring on the ramp
dataset, with a sampling depth of 256, and three different
sets of bifurcation factors. The profiles of images (b), (c),
and (d) are plotted in figure (a) in red, green, and blue,
respectively. Compare these images with figure 2(d)

The results of this technique are quite encouraging.
The error for the ramp dataset is considerably improved;
we show three different combinations of bifurcation fac-
tors in figure 9. Notice that for the hierarchies of two

(b) 1024 x 1
Ly

(a) Software

(c) 256 x 4 (d) 16 x 8 x 8
Lo, =28 Lo, =4
Ly =29.70 L, =119

Figure 10: Comparing different set of bifurcation factors
for the RM dataset.

levels (64 x 4 and 16 x 16), the error is much better when
the two bifurcation factors are closer to each other. As
discussed in earlier sections, the error is proportional to
the exponent size, so minimizing the variance in the bi-
furcation factors minimizes the error associated with the
tree. Also, as the tree height increases, the bifurcation
factors decrease, and the error decreases.

The error for the RM dataset also considerably im-
proved. We show images for three different combinations
of bifurcation factors in figure 10. Figure 10(a) is ren-
dered by software. Figure 10(b) is generated by composit-
ing 1 group of 1024 slices (i.e., no exponent-factoring;
the naive hardware method). Figure 10(c) composites 4
groups of 256 slices. Figure 10(d) composites a hierarchy
of 8 groups of 8 groups of 16 slices. For the hierarchies of
height 2 the error decreases as the difference between the
bifurcation factors in minimized. The error also decreases
as the tree height is increased; a tree with bifurcation fac-
tors of 2 (and height=10) has Lo, = 2 and Ly = 0.81.

There are two parameters that affect the performance
of this technique: the height of the compositing tree and
the regularity of the bifurcation factors. The cost for com-
positing the original slices of the volume is fixed: each
slice is only drawn once. However, each additional addi-
tional node in the compositing tree involves a buffer clear,
compositing the cached images of the subnodes, copying
the image from the framebuffer to a texture, and a appli-
cation of exponent-factoring of the image. Increasing tree



height (and decreasing the bifurcation factors) decreases
error but increases rendering time.

The OpenGL functions to perform the exponent-
factoring operation are extremely slow and the current
implementation as it is not useful for interactive view-
ing so we have not reported times for these tests. How-
ever, there are several places for improvement. Ezponent-
factoring could be performed using dependent texture
lookups in a pixel program, the render-to-texture exten-
sion obviates image copy, and setting the maximum bi-
furcation factor to the number of allowable textures and
performing all composite operations in a pixel program
obviates a buffer clear.

7 Conclusions and Future Work

We have shown two techniques for improving rendering
transparent objects on limited-width, fixed-point, graph-
ics hardware. While both can significantly improve the
quality and accuracy of a volume rendered image, there
seems to be a limit to how much they can do. Dithering
can capture color, but is not as accurate as exponent-
factoring. It is also not one that can be applied indefi-
nitely and still see improvement. Exponent-factoring can
capture extremely small values but cannot capture color.
Both techniques can be used in real-world applications,
and have their place in the visualization toolbox.
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